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Review
Probability has played a central role in models of per-
ception for more than a century, but a look at probabi-
listic concepts in the literature raises many questions. Is
being Bayesian the same as being optimal? Are recent
Bayesian models fundamentally different from classic
signal detection theory models? Do findings of near-
optimal inference provide evidence that neurons com-
pute with probability distributions? This review aims to
disentangle these concepts and to classify empirical
evidence accordingly.

Decision-making in an uncertain world
In order to survive and thrive, all animals must derive
knowledge about the world from sensory observations. A
wildebeest needs to know whether a predator is hiding in the
high grass, a badminton player where the shuttlecock will
land, and an actuary how long a life insurance buyer will
live. As is typical of perception and cognition, each of these
judgments is made under uncertainty, caused by noise and
ambiguity in the observations [1]. Since Helmholtz [2] and
Mach [3], scientists have used the language of probability to
describe human perception under uncertainty. Signal de-
tection theory [4–6] opened a new era in psychology, as it
allowed researchers to model a wide range of tasks using the
idea that observers make optimal decisions based on uncer-
tain information, a strategy that involves Bayes’ rule for
probabilities. In recent decades, interest in Bayesian models
of perception has surged, with many studies concluding that
humans use information about sensory uncertainty in per-
ceptual decision-making [7,8]. An appealing aspect of Bayes-
ian models is that they are often [9], though not always [10],
highly constrained by the statistical structure of the experi-
ment and thus require few assumptions. Unfortunately,
amidst the enthusiasm for probabilistic models of percep-
tion, important distinctions between the key notions of
optimal inference, Bayesian inference, and computing with
probability distributions are sometimes lost. This has led to
inaccurate claims about perception and misplaced criticism
of Bayesian models. The purpose of this review is to clarify
the differences between these concepts. Although I will focus
on perception, much of the discussion applies to other forms
of cognition, as well.

Formalizing optimality, Bayesian inference, and
probabilistic computation
An observer’s knowledge of a world state can mathematically
be expressed as a probability distribution – in the examples
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above, over target presence, landing location, and life span.
Since this knowledge is based on sensory observations, the
probability distribution is a conditional distribution, which
can be denoted by q(world state j observations).

Knowledge is not sufficient for organisms; actions are
needed. The wildebeest might decide whether to stay put,
the badminton player whether to attempt a return, and the
actuary what premium to set. Cost or utility is associated
with each combination of true world state and action,
denoted by C(world state, action): if the badminton player
does not attempt to return the shuttle, energy is saved, but
at the cost of a point if the shuttle lands inside the court. For
the observer, the expected cost of an action is a weighted
average over world states, with weights given by the proba-
bilities of those world states given the observations:

ECðactionÞ ¼
X

world state

Cðworld state; actionÞ

� qðworld statejobservationsÞ (1)

Observers are called optimal if their actions minimize
expected cost. Thus, optimality is defined only with respect
to a specific cost function. The literature on cost functions
used by human and non-human observers is extensive and
has been reviewed elsewhere [8,11]. Although real-life tasks
involve complex and often unknown cost functions, for sim-
plicity, I will focus here on purely perceptual tasks, in which
the observer’s action is merely a report of the world state. In
such tasks, it is reasonable to assume that the observer
maximizes accuracy; this is sometimes reinforced by the
observer receiving a unit reward for each correct report.

Regardless of the cost function, an observer who wants
to achieve optimality must compute the conditional distri-
bution q(world state j observations) on a given trial in a
specific way, namely by using the statistics of world state
and observations across many trials. Imagine that you are
trying to guess the age of a man you just met. Different
ages occur with different frequencies in the population,
which can be expressed using a probability distribution
p(age). The observations could consist of the man’s visual
image. Since the same age can give rise to an infinite
number of different images, there is no one-to-one corre-
spondence between world state and observations. More-
over, external and internal noise will add variability to the
observations. Thus, the observations are best described by
a conditional distribution p(visual observations j age). The
distributions p(age) and p(visual observations j age) to-
gether make up the statistical structure of the task, also
called the generative model [12,13].
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Figure 1. Distinguishing Bayesian, optimal, and probabilistic computation. (a) Bayesian inference of a man’s age. The prior was obtained from the age distribution of men

in the United States. (U.S. Census Bureau, 2010 Census Briefs: Age and Sex Composition 2010). The red arrow indicates the MAP estimate. (b) Using an approximate prior

produces a different posterior and, though Bayesian, is suboptimal. The degree of suboptimality depends on the severity of the approximation. (c) If both the true age

distribution and the observer’s prior were flat, the MAP estimate would be independent of uncertainty (the width of the likelihood function; two examples shown) – non-

probabilistic, yet optimal computation. (d) Even when inference is suboptimal, the MAP estimate may depend on uncertainty: here, the likelihood is broader than in (b) and

the MAP estimate is different. This is an example of probabilistic, suboptimal computation.
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An observer who knows the distributions in the genera-
tive model can compute the desired probability distribution
over the world state – called the posterior distribution –
using Bayes’ rule (Figure 1a):

pðworld statejobservationsÞ / pðobservationjworld stateÞ
� pðworld stateÞ (2)

All three probabilities in this equation are ‘subjective’: they
quantify the observer’s internal beliefs on a given trial, rather
than the frequencies of outcomes across many trials. ‘World
state’ should thus be interpreted as ‘hypothesized world
state’. In this interpretation, p(world state) quantifies the
belief in each hypothesis in the absence of any observations
and is called the prior distribution, whereas p(observations j
world state) measures the strength of the evidence for each
hypothesis and is called the likelihood function (of the world
state). Using the posterior distribution from equation (2) for
the distribution q(world state j observations) in equation (1) is
necessary for minimizing expected cost. The computation in
equation (2) is called Bayesian inference. To maximize accu-
racy (which corresponds to the cost function we assume for
perception), the observer should pick the world state with the
highest posterior probability. This is called maximum-a-
posteriori (MAP) estimation.

Key dichotomies
The different concepts in probabilistic models of perception
are listed in Table 1. This section describes and clarifies the
key dichotomies in such models.
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Optimal versus suboptimal Bayesian inference

Optimal inference and Bayesian inference are not synony-
mous, because Bayesian MAP estimation based on incorrect
assumptions about the generative model is usually subopti-
mal. In the age estimation example, suppose you immigrat-
ed from a country with a more skewed age distribution, such
that q(age) 6¼ p(age), or where men develop wrinkles at a
later age, so that q(visual observations j age) 6¼ p(visual
observations j age). It would then be perfectly Bayesian to
use q(age) and q(visual observations j age) to compute
posteriors in your new country; however, you would make
more mistakes and thus not be optimal (Figure 1b). In
perception, suboptimal Bayesian inference occurs in two
important circumstances. First, the stimulus statistics in
an experiment might not match those encountered in the
natural world. Training notwithstanding, observers might
use ‘default’ priors and likelihoods obtained from the statis-
tics of the natural world. This effect is cleverly exploited in
experiments such as the McGurk-MacDonald effect [14],
where a small conflict is introduced between an auditory
and a visual speech cue, presented simultaneously. The
natural prior favors that synchronous audio and video
originate from the same speech, but is incorrect in the
experiment. Many cue conflict studies [7,15], in which sub-
jects are presented with two slightly disparate stimuli but
are still expected to combine them into a single percept, test
Bayesian models that are suboptimal with respect to the
experimental statistics. However, since natural statistics
are undoubtedly more fundamental than experimental
ones, an observer’s use of natural statistics in inference is



Table 1. Concepts in probabilistic models of perception

Bayesian inference Making a decision about a state of the world based on sensory observations by computing a posterior distribution.

Can be optimal or suboptimal, and probabilistic or not.

Optimal inference Making a decision about a state of the world based on sensory observations in such a way that expected cost is

minimized. Is always Bayesian. Equivalent to MAP estimation when accuracy is maximized.

Probabilistic computation Making a decision about a state of the world based on sensory observations, while taking into account knowledge

of the uncertainty associated with the observations. Requires a trial-to-trial neural representation of uncertainty.

Absolute optimality See optimal inference, with the relevant observations being the raw sensory input

Relative optimality See optimal inference, with the relevant observation being a processed representation of the sensory input

Signal detection theory Theory of how observers make decisions based on sensory observations. In principle very general, but in practice

mostly restricted to binary decisions and non-probabilistic computation.
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widely regarded as optimal. Second, suboptimal Bayesian
inference can occur when the true distributions p(world
state) and/or p(observations j world state) are difficult to
learn or cannot be implemented in neural circuitry. In these
situations, the brain might be forced to use approximations
q(world state) and/or q(observations j world state), and
again be suboptimal. Characterizing such approximations
is an important direction for future research (Box 1). In
summary, all optimal inference is Bayesian, but certainly
not all Bayesian inference is optimal.

Probabilistic versus non-probabilistic computation

If an observer’s behavior is found to be consistent with
MAP estimation and thus with optimality, it is tempting to
conclude, based on equation (2), that the observer encodes
and computes with probability distributions. This conclu-
sion would be premature. Even though modelers compute
the MAP estimate from the posterior distribution, the MAP
estimate is ultimately nothing but a specific function of the
observations – a type of stimulus-response mapping. As
long as the observer applies this function, behavior will be
optimal, regardless of whether a posterior distribution is
computed. To address the question of whether an observer
encodes and computes with probability distributions, one
can test models in which the observer’s report on a given
Box 1. Future directions for Bayesian models of perception

� Increasing complexity. Most generative models of tasks in which

models of probabilistic computation have been tested have been

relatively simple. For example, most cue combination studies

involve a single, one-dimensional stimulus variable. To examine

how prevalent probabilistic computation is in perception, tasks

with greater complexity have to be examined, such as categoriza-

tion tasks and tasks with multiple objects. An ambitious direction

is to apply Bayesian ideas to object recognition [12] and natural

scene perception.

� Modeling approximate, suboptimal inference. Discovering the

boundaries of optimality requires the development and testing of

plausible suboptimal models, for instance ones inspired by

machine learning [88]. The extent to which human behavior is

optimal might depend on the complexity of the task’s generative

model and the task’s ecological importance.

� Resource constraints. Biological constraints, such as on the

number of available neurons and the amount of available energy

[89,90], might affect decision-making, even in simple perceptual

tasks. In psychological terms, resource constraints might take the

form of spatial attention or limited working memory. In Bayesian

models of multiple-object tasks, resource constraints have been

modeled through a decrease in measurement precision with the

number of items [36,76,91–95]. Resource constraints need to be

characterized better and integrated with models of inference.

� Neural implementation. See Box 2.
trial depends on the sensory uncertainty associated with
each observation on that trial. If such a model (whether
optimal or suboptimal) describes the observer’s behavior
well, one can conclude that at least some probabilistic
information – namely sensory uncertainty – is propagated
from the input stage to the decision. We call such compu-
tation probabilistic. Not all optimal computation is proba-
bilistic (Figure 1c) and not all probabilistic computation is
optimal (Figure 1d). As a consequence, the statement that
‘Bayesian optimality implies that neurons encode proba-
bilities’ [16] is inaccurate. A correct statement would be ‘If
subjects use a decision rule that requires knowledge of
sensory uncertainty, this implies that neurons encode
uncertainty.’

The notion of probabilistic computation can help to dis-
tinguish signal detection theory models from the more recent
wave of Bayesian models. For classic detection and discrimi-
nation tasks, signal detection theory models are optimal
Bayesian models. Beyond such tasks, however, signal detec-
tion theory modelers have focused on non-probabilistic and
sometimes non-Bayesian decision rules (examples are dis-
cussed below). By contrast, many recent Bayesian studies
have examined tasks in which optimal performance does
require computing with information about sensory uncer-
tainty, that is, probabilistic computation.

Absolute versus relative optimality

So far, the nature of the observations has not been speci-
fied. The observations could consist of the physical signals
entering the organism’s sensory organs – the retina, hair
cells, skin mechanoreceptors, etc. If the observations are
understood in this way, the behavior of an optimal observer
is optimal in an absolute sense: no system could possibly
achieve a lower expected cost. Relative optimality is less
stringent: the observations consist of an unspecified repre-
sentation of the input inside the brain, which might con-
tain less information than the raw sensory input.

Example: visual search
To make these notions concrete, let us consider a laborato-
ry version of the wildebeest’s conundrum – visual search.
An observer reports whether an item oriented at 28 (the
target) is present among N items; non-target items (dis-
tractors) all have a �28 orientation (Figure 2a). The prob-
ability that the target is present is 50%, and if it is present,
it is equally likely to appear at any location. Let us denote
the orientations on a given trial by s1,. . ., sN, and the
observer’s noisy measurements (observations) by x1,. . .,
xN. In neural terms, xi can be regarded as the best possible
513



Pr
ob

ab
ili

ty

si
Mea sure ment  xi  

σi

(a) (b) (c)

C

…

…

C1 CN

SNS1

xNx1

…

+

TRENDS in Cognitive Sciences 

Figure 2. (a) A visual search task. The observer is asked to report whether a 28 rightward tilted line is present among distractors tilted 28 leftward. Items can have different

contrasts. The display is shown briefly (e.g., for 100 ms). (b) We assume that the observer’s noisy measurement xi follows a Gaussian distribution around the true

orientation si (here equal to 28 or �28), with standard deviation si (controlled by contrast). (c) Generative model. C denotes target presence (yes or no) in the whole display,

Ci at the ithi location. Each arrow represents a statistical dependence between variables. The observer infers C from the measurements x1,. . .,xN. The generative model is

completely determined by the experimental design combined with the assumption in (b), and in turn completely determines the observer’s decision rule and the Bayesian

model’s predictions for the observer’s behavior.
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guess of the orientation si based on single-trial neural
activity. We make the standard assumption [6] that each
xi is drawn independently from a Gaussian distribution
with mean si and standard deviation si (Figure 2b). This
standard deviation (noise level) can be experimentally
manipulated through contrast. The statistical structure
(generative model) of the task is shown graphically in
Figure 2c. Let us now consider different decision rules,
which can be organized according to Figure 3(I will refer to
the numbered regions in this diagram; since the task is
binary, Regions 2, 5, 8, and 11 of the diagram are not
applicable.)
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Figure 3. Probabilistic models of perception can be organized according to

whether the observer maximizes reward (optimality) or whether the observer uses

trial-to-trial uncertainty information (probabilistic computation). Optimality comes

in two forms, absolute and relative. Bayesian and signal detection theory models

occupy subsets of this space. Numbered regions are referenced in the text.
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Regions 1 and 4: optimal, probabilistic computation

On a given trial, the observer has to decide whether the
target is present based on a set of measurements x1,. . ., xN.
Using the generative model, one can derive, in a lengthy
but straightforward manner, the decision rule an observer
should apply to the measurements to maximize accuracy
[5,17]. That optimal rule is used to report ‘target present’
when the quantity exp(4xi/si

2), averaged across locations,

exceeds 1: 1
N

XN

i¼1
e

4xi
s2
i > 1. Every positive measurement xi will

contribute to evidence for the target being present, but
importantly, every measurement is also weighted by its
inverse variance, si

2: noisier measurements are weighted
less in the decision. If xi and si represent the information
contained in the raw sensory signals, then this rule will
produce absolute optimality (Region 1), otherwise relative
optimality (Region 4).

From the point of view of the observer, si is the level of
sensory uncertainty about the ith orientation. Thus, in
order to be optimal in this task, the observer must know
the level of sensory uncertainty associated with each mea-
surement, and the decision rule is therefore an instance of
probabilistic computation. Humans seem to follow this
decision rule and thus perform both near-optimal and
probabilistic computation in visual search [17].

Regions 3 and 6: optimal, non-probabilistic computation

When only a single item is presented (N=1), the search task
reduces to a discrimination task (was the orientation �28
or 28?) and the optimal decision rule above to x1>0. This
decision rule is non-probabilistic, since s1 does not appear.
In simple detection and discrimination tasks, the equiva-
lent of this rule is often a good description of human
behavior [6], but this is of limited interest given the
absence of plausible alternative models.

Regions 7 and 9: suboptimal, Bayesian computation

Bayesian inference under a wrong assumption about the
generative model will usually produce a suboptimal deci-
sion rule. For example, if the observer erroneously believed
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that the target was present on 40% rather than 50% of

trials, the decision rule would be 1
N

XN

i¼1
e

4xi
s2
i > 1:5, or if the

observer believed that all measurements were equally

noisy, the rule would be 1
N

XN

i¼1
e
4xi
s2 > 1, with s the assumed

common noise level. A radically wrong belief about the
generative model would be that on a target-present trial,
all items are targets instead of only one. The Bayesian

MAP rule under this belief would be
XN

i¼1

xi
s2
i

> 0, a variant of

the so-called sum rule [18]. Each of these rules would lead
to lower accuracy than the optimal rule. Each of these three
suboptimal rules also happens to be probabilistic (Region
7). A non-probabilistic and suboptimal, but Bayesian deci-

sion rule would be the standard sum rule,
XN

i¼1
xi> 0 [18],

which is the MAP rule for a generative model in which on a
target-present trial, all items are targets, and in addition,
all items have the same noise level (Region 9). Neither the
sum rule nor its probabilistic variant can describe human
behavior [17].

Regions 10 and 12: suboptimal, non-Bayesian

computation

A plausible, non-probabilistic, suboptimal decision rule is
the maximum-of-outputs or max rule, maxi xi> k, where k
is a constant criterion. This rule is not only suboptimal, but
also non-Bayesian (Region 12), since it is not derived from
MAP estimation based on a generative model. The max
rule has had a long history in signal detection theory [18–
20], but was recently shown to be inadequate when uncer-
tainty varies unpredictably [17]. A probabilistic version of
the max rule could be maxi

xi
si
> k (Region 10).

Psychophysical evidence
There is psychophysical support for each of the types of
computation discussed above.

Relative optimality

A fertile testing ground for relative optimality has been the
study of how humans and monkeys combine cues from
different modalities, for example, visual and vestibular
information about self-motion direction. Some cue combina-
tion studies find evidence for near-optimality [21–26], but
others report marked deviations from optimality in the form
of overweighting of one of the cues [27–29]. In the realm of
evidence accumulation (cue combination over time), opti-
mality is somewhat ambiguous in view of the speed-accura-
cy trade-off, but the prominent diffusion-to-bound model for
binary choice [30,31] is closely related to a model that is
optimal in a specific sense [32,33]. Demonstrations of near-
optimal inference in tasks more complex than cue combina-
tion have emerged in recent years [17,25,34–39].

Several Bayesian studies have examined whether
human subjects perform MAP estimation using priors
derived from natural statistics [40]. For example, the
statistics of contours in natural scenes predict whether
subjects judge a set of oriented elements as belonging to the
same contour [41–43], whereas the statistics of orienta-
tions are consistent with human priors in an orientation
judgment task [44]. These studies provide evidence for
optimal, non-probabilistic computation.

Absolute optimality

Absolute optimality, usually non-probabilistic, has been
examined in many contexts, including photon detection
[45–49], pattern detection and discrimination [50–53], dis-
crimination of dot density [54], object recognition [55,56],
and letter identification [57] (see [9] for a detailed review).
Very few instances of absolute near-optimality have been
reported, however. Efficiency (closeness to absolute opti-
mality) seems task-dependent, potentially reflecting sub-
optimal inference rather than the mere presence of noise in
the nervous system [58].

Bayesian inference without optimality

Priors over many variables, such as speed [59,60], temporal
duration [61], event location [34], surface shape and orien-
tation [62], and illuminant chromaticity in color perception
[63] have been postulated within the context of Bayesian
models. Since those priors were not derived from experi-
mental or natural statistics, these studies provide evidence
for Bayesian and incidentally also probabilistic computa-
tion, but not for optimality. A recent contour detection study
found that humans performed worse than an absolutely
optimal observer who uses the experimental statistics,
and argued for a Bayesian, suboptimal, non-probabilistic
model [64]; an earlier study proposed a Bayesian, non-
probabilistic model, but did not address optimality [65].

Probabilistic computation

A strong test of probabilistic computation is to vary sensory
noise unpredictably from trial to trial and (if applicable)
from item to item, while withholding feedback or providing
uninformative feedback. This has been done in several cue
combination studies [22,23,26], visual search [17], confi-
dence-based visual decisions [66], and change detection
[39]. Weaker tests are those using only a single level of noise
[24,34,67,68], because a subject could use multiple trials to
estimate sensory uncertainty, and those providing trial-to-
trial feedback [21,35], because a subject could, instead of
using internal knowledge of sensory uncertainty, treat the
corresponding variables as unknown parameters and learn
their values through the feedback. In combining perceptual
information with an asymmetric reward structure, both
humans [68,69] and non-human animals [70–72] use an
internal estimate of decision confidence, thus suggesting
probabilistic, but not necessarily optimal computation.
Explicit tests of probabilistic computation in evidence
accumulation, by manipulating stimulus reliability over
time, have been rare [73]. Finally, signal detection theory
studies of multi-object tasks have mostly focused on
testing max and sum models [18,19,74–79], that is, non-
probabilistic computation. To my knowledge, no instances
exist in which optimality requires probabilistic computation,
but human data are better described by a model of non-
probabilistic computation.

It should be noted that some published probabilistic
models of perception have technical problems. A tempting
515
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mistake when sensory noise is present is to assume that
the likelihood function, such as the noise distribution, is
fixed for a given stimulus (e.g., [80–84]). In reality, the
likelihood function and, therefore, the posterior vary from
trial to trial even when the stimulus is kept fixed, because
they are computed from the noisy measurements on each
trial.

Concluding remarks
In this article, I drew distinctions between the notions of
Bayesian inference, optimality, and probabilistic compu-
tation, and motivated a corresponding organization of
empirical evidence. Psychophysical evidence shows that
absolute optimality is elusive, paints a mixed picture
regarding relative optimality, but provides strong indica-
tions that the brain performs probabilistic computation
and thus computes with neural representations of uncer-
tainty. It is likely that in most real-world perception,
organisms perform computations that are probabilistic,
but suboptimal due to the complexity of generative models
and limitations of neural circuitry. However, more tests of
probabilistic computation are needed (Box 1).

In practice, high-level cognition is more difficult to model
than perception, since cost functions and generative models
are less constrained and more ambiguous. In principle,
however, many of the distinctions drawn here also apply
to other areas of cognition. For example, judging a man’s
total lifespan from a single observation of age can be formu-
lated as a Bayesian inference problem [85]. Indeed, in the
cited study, subjects were found to behave (as a group) close
to optimally. However, this does not demonstrate that
humans compute with likelihood functions or probability
distributions; much more work is needed in this area.

Finally, psychophysical evidence for probabilistic com-
putation raises the question how neurons compute with
sensory uncertainty information or even full probability
distributions. One scheme that has been proposed involves
Box 2. Neural models of probabilistic computation

Models of perception have the potential to constrain neural

implementations of perceptual computations. To form a neural

model out of a behavioral model, the first step is to define the

relevant level of neural variables. A strong candidate is the level of

spike counts in sensory and decision-making neurons [96]. For

example, presenting an oriented stimulus s might elicit a set of spike

counts r=(r1,. . .,rn) in a population of orientation-tuned cells in

primary visual cortex. Population activity is subject to trial-to-trial

variability, which can be described by a distribution p(rjs). There is a

direct connection between r and x, the scalar measurement of the

stimulus in a behavioral model: the latter is the value that maximizes

the neural likelihood function over the stimulus, L(s)=p(rjs) [97,98].

The width of the likelihood function L(s) is the observer’s uncertainty

about the stimulus, s. Since r is a high-dimensional variable, it has

sufficient degrees of freedom to encode s on a trial-by-trial basis.

For example, if we assume for p(rjs) independent Poisson variability

with Gaussian tuning curves, then s2 is proportional to the inverse

of the total spike count in the population [99]. Using neural

likelihood functions, one can map Bayesian models of behavior to

neural operations. This approach, also called probabilistic popula-

tion coding, has been successfully applied to cue combination [16],

decision-making [100,101], visual search [17], and various forms of

marginalization (averaging over confounding variables) [102]. Many

alternative schemes for encoding likelihood functions or probability

distributions using neurons have been proposed [13,103–112].
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making use of the likelihood function naturally encoded in
neural population activity (Box 2). Beyond perception, the
neural implementation of cognitive probabilistic models
remains virtually unexplored [86,87].
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